In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation.
نویسندگان
چکیده
Several human immunodeficiency virus (HIV) protease inhibitors, including atazanavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir, were tested for their potential to inhibit uridine 5'-diphospho-glucuronosyltransferase (UGT) activity. Experiments were performed with human cDNA-expressed enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) as well as human liver microsomes. All of the protease inhibitors tested were inhibitors of UGT1A1, UGT1A3, and UGT1A4 with IC(50) values that ranged from 2 to 87 microM. The IC50 values found for all compounds for UGT1A6, 1A9, and 2B7 were >100 microM. The inhibition (IC50) of UGT1A1 was similar when tested against the human cDNA-expressed enzyme or human liver microsomes for atazanavir, indinavir, and saquinavir (2.4, 87, and 7.3 microM versus 2.5, 68, and 5.0 microM, respectively). By analysis of the double-reciprocal plots of bilirubin glucuronidation activities at different bilirubin concentrations in the presence of fixed concentrations of inhibitors, the UGT1A1 inhibition by atazanavir and indinavir was demonstrated to follow a linear mixed-type inhibition mechanism (Ki = 1.9 and 47.9 microM, respectively). These results suggest that a direct inhibition of UGT1A1-mediated bilirubin glucuronidation may provide a mechanism for the reversible hyperbilirubinemia associated with administration of atazanavir as well as indinavir. In vitro-in vivo scaling with [I]/Ki predicts that atazanavir and indinavir are more likely to induce hyperbilirubinemia than other HIV protease inhibitors studied when a free Cmax drug concentration was used. Our current study provides a unique example of in vitro-in vivo correlation for an endogenous UGT-mediated metabolic pathway.
منابع مشابه
Predictors of the change in bilirubin levels over twelve weeks of treatment with atazanavir
Introduction Atazanavir (ATV) is a protease inhibitor used in the treatment of HIV infection. It is useful in patients on methadone replacement therapy as its once daily dosing facilitates co-administration with methadone and, unlike the non-nucleoside reverse transcriptase inhibitor, efavirenz, it does not accelerate the metabolism of methadone via induction of cytochrome P450 enzymes [1]. ATV...
متن کاملDesign of new potent HTLV-1 protease inhibitors: in silico study
HTLV-1 and HIV-1 are two major causes for severe T-cell leukemia disease and acquired immune deficiency syndrome (AIDS). HTLV-1 protease, a member of aspartic acid protease family, plays important roles in maturation during virus replication cycle. The impairment of these proteases results in uninfectious HTLV-1virions.Similar to HIV-1protease deliberate mutations that confer drug resistance on...
متن کاملCorrelation between bilirubin glucuronidation and estradiol-3-gluronidation in the presence of model UDP-glucuronosyltransferase 1A1 substrates/inhibitors.
Inhibition of UDP-glucuronosyltransferase (UGT) 1A1-catalyzed bilirubin glucuronidation by drug compounds may potentially be of clinical concern. However, in drug discovery and development settings, bilirubin is less than an ideal in vitro probe for assessing the potential of a chemical entity to inhibit bilirubin glucuronidation. In part, this is due to the propensity of bilirubin to photodegr...
متن کاملEffect of efavirenz on UDP-glucuronosyltransferase 1A1, 1A4, 1A6, and 1A9 activities in human liver microsomes.
Efavirenz is a non-nucleoside reverse transcriptase inhibitor used for the treatment of human immunodeficiency virus type 1 infections. Drug interactions of efavirenz have been reported due to in vitro inhibition of CYP2C9, CYP2C19, CYP3A4, and UDP-glucuronosyltransferase 2B7 (UGT2B7) and in vivo CYP3A4 induction. The inhibitory potentials of efavirenz on the enzyme activities of four major UDP...
متن کاملInhibition and active sites of UDP-glucuronosyltransferases 2B7 and 1A1.
Two human UDP-glucuronosyltransferases (UGTs), UGT2B7 and UGT1A1, catalyze the glucuronidation of many endo- and xenobiotics. Although UGT1A1 uniquely catalyzes the glucuronidation of the endobiotic, bilirubin, and UGT2B7 uniquely catalyzes the glucuronidation of morphine to both the 3-0 glucuronide and the 6-0 glucuronide, both catalyze the glucuronidation of the mixed opioid agonist/antagonis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 33 11 شماره
صفحات -
تاریخ انتشار 2005